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Summary

A study was conducted from 1998 to 2001 on blue shark
(Prionace glauca) by-catch of the Italian and Greek surface-
drifting swordfish long-line fisheries in the Mediterranean Sea.
The focus was on examining whether catches are related to
some environmental, spatial, temporal or operational param-
eters and to what extent, applying generalized linear model
(GLM) approaches. Analyses indicated that most appropriate
for the dataset was the Delta-lognormal model, which is a
binomial error distribution for the probability of a non-zero
catch and lognormal error for positive catch rates. Spatial and
temporal factors were the most influential regarding blue shark
distribution and abundance, with a considerable interaction
between them; the modeled environmental factors were of
minor importance. Spatial distribution revealed a strong
longitudinal gradient whereby blue shark occurrences
increased in an east to west direction, whereas catches by
latitude were higher in southern- and northern-most regions.
Blue sharks were more frequently encountered in autumn and
in distant open waters; however, the likelihood of making a
larger catch peaked in late spring—early summer and in the
vicinity of land. Catch rates differed significantly depending on
the fishing gear configuration. Deeper settings (>20 m), more
resilient lines and use of fish attractants increased the
probability of P. glauca capture.

Introduction

Blue shark (Prionace glauca, Linnaeus 1758) is a large pelagic
oceanic species of the family Carcharhinidae that inhabits clear
and deep waters in tropical, subtropical and temperate areas.
P. glauca is often found in large aggregations, not tightly
organized schools, and frequently close to or at the surface
(Compagno, 1984; Castro et al., 1999). While blue shark is
among the most abundant, widespread, fecund and faster-
growing of the elasmobranchs, it is also one of the most heavily
fished sharks in the world (Castro et al., 1999). The impact
of annual fisheries mortality (mainly as by-catch), estimated at
10-20 million individuals, is likely having an effect on the world
population, but monitoring data are inadequate to assess the
scale of any population decline (Stevens, 2000). Highly migra-
tory in nature, it is known to make seasonal reproductive
migrations following changes in water temperature and currents
(Nakano, 1994; Stevens, 1999). The effect of oceanographic
factors on the inter-annual variability of blue shark catch rates is
an important focal point of current research, which uses data
derived from satellite remote sensors together with commercial
fishing catch reports. Information on possible interactions might

facilitate the interpretation of abundance indices variability and
the management of several blue shark populations. Applications
of non-parametric generalized additive models (GAMs), incor-
porating environmental data to analyze fishery performance
trends in the Pacific Ocean, have determined that blue shark
catch rates are significantly affected by spatial, temporal and
environmental parameters (Bigelow et al., 1999; Walsh and
Kleiber, 2001). Analogous approaches to standardize shark
catch rates applying Generalized Linear Models (GLMs) have
been recently used in the Atlantic Ocean (Cortés, 2002; Nakano
and Clarke, 2005) and southern Australian waters (Punt et al.,
2000).

The Mediterranean Sea seems to be a relatively overlooked
area of research for blue shark and sharks in general. Blue
sharks constitute a major by-catch of long-line fisheries
targeting swordfish or tunas, much of which is poorly
documented and where data are rarely incorporated into
national and international statistics (Buencuerpo et al., 1998;
Megalofonou et al., 2005a,b; Gilman et al., 2007). The avail-
able historical data from swordfish fisheries indicate that the
Mediterranean blue shark is in general decline (Saldo et al.,
2007). For fisheries management purposes the Mediterranean
population is considered as independent of the North Atlantic
population; however, the extent of exchange between these
populations (if any) is poorly understood (Soldo et al., 2007).

Since the late 1960s the large pelagic fishery in the eastern
Mediterranean Sea operates mainly with Italian and Greek
long-line fleets primarily targeting swordfish (De Metrio et al.,
1988). The Italian fleet comprises approximately 1200 vessels
carrying out activities from late February to December. In
Greece, about 100 vessels are involved on a regular basis from
February to the end of September, but with several boats
fishing occasionally during summer. Blue sharks comprise a
significant portion of the total catch, reaching as much as 20%
in the Italian fleet and 4% in the Greek fleet (Megalofonou
et al., 2005a,b). In the past, an attempt to associate fishery
datasets with several plausible factors affecting blue shark
distribution and abundance in the Mediterranean was never
undertaken, not only due to the lack of consistent operational
and environmental data, but also as a result of sharks being
considered a low research priority for most fisheries. Only after
2002 and with the intention to put into effect the European
Union regulation 1543 /2000, Italy and Greece initiated
monitoring of fisheries activities. To date, logbooks kept on
fishing vessels are unreliable because of lack of surveys by port
authorities. In this paper, the influence of specific environ-
mental, spatial, temporal, and operational parameters on catch
rates of blue sharks in the eastern Mediterranean was studied
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using GLM approaches. GLMs were initially applied to
identify the most significant factors affecting blue shark
catches and thereafter to quantify their contribution to blue
shark distribution and relative abundance.

Materials and methods
Study area and data collection

In the four-year period 1998-2001, sampling was carried out
using a network of fishing ports in the Adriatic Sea, [onian Sea,
Aegean Sea and Levantine Basin. Observers collected data while
stationed either at pilot fishing ports or on board fishing vessels
targeting swordfish. In total, 33 fishing vessels operating from 16
major fishing ports were monitored from 550 fishing sets in
Greece and 200 sets in Italy. The fleets utilized two types of
fishing gear: the traditional swordfish long-line (SWO-LL7) and
the ‘American type’ swordfish long-line (SWO-LL,4). The main
difference between the two types of gear is the fish attractant
chemical light stick attached to branch lines one meter above the
bait in the SWO-LL4 (Megalofonou et al., 2005a). Both are
categorized as surface-drifting fishing gear, but their fishing
depths vary considerably: SWO-LL rarely exceeds 20 m depth,
whereas SWO-LL, targets depths between 15 and 50 m. Setting
begins in the evening and the operation ends before midnight.
Retrieval commences at dawn each day and can last for several
hours, depending on the length of the gear, the conditions of the
sea and the quantity of fish caught. Observers performed duties
that included gathering of fishing and operational data, fish
identification and measurements, and recording of spatial and
temporal variables. Fishing and operational data included the
name of the fishing boat, gear used, fishing sets per trip and
fishing effort for each fishing set in the number of hooks, and
number and weight of fish caught per fishing set by species.
Spatio-temporal variable data included the date and geographi-
cal coordinates of each fishing set. Sea surface temperature
(SST), Lunar index, Bathymetry and Distance from coast data
were assigned to all fishing sets based on the exact date and
coordinates (Damalas et al., 2007). To investigate trends in
resource abundance of sharks, standardized estimates of nom-
inal catch-per-unit-effort (CPUE), calculated as the number of
fish / 1000 hooks, were used.

Statistical analyses — modeling

Fishery performance (CPUE) was modeled in S-PLUS soft-
ware package (Insightful Inc.) as a function of categorical and
continuous effects using Generalized Linear Model (GLM)
approaches (McCullagh and Nelder, 1989; Chambers and
Hastie, 1997; Maunder and Punt., 2004; Venables and Dich-
mont, 2004). As blue sharks were non-target species, the
distribution of catches was skewed, including many zero or low
values and few large-catch observations. For the estimation of
mean CPUE in an attempt to account for this variability, the
‘Delta-model’ (Ortiz and Arocha, 2004) was applied with the
general form (Maunder and Punt., 2004):

w y=0,

Pr(Y =y) = { (17 —w)f(y) otherwise W

where w is the probability of a zero observation and f(y) the
error-distribution of catch rates from positive catch sets
(Pr = probability, y = response variable). It was assumed
that the two sub-models refer to different processes. In the first
sub-model, the probability of a zero catch is the probability of

encountering a school. In the second sub-model, the distribu-
tion of the positive catch sets is the probability of the school
size (Maunder and Punt., 2004). Identification of the under-
lying probability distribution for the errors in the dependent
variable (positive catches of blue shark) was performed using
the Akaike information criterion (AIC) to discriminate among
error distributions (Burnham and Anderson, 2002). Several
available error distributions, with their corresponding link
functions, were investigated: normal (gaussian), lognormal,
Gamma, and Poisson. The Poisson distribution specifically
was assumed to be the number of blue sharks caught per
fishing set, with effort used as an offset. In order to compare
models assuming different error distributions, the same num-
ber of parameters for each model (all variables plus interac-
tions) was used. After calculating AIC scores for each
candidate model, the standard procedure to discriminate
among several distributions was based on the computation
of the corresponding ‘Akaike weights”:

exp(—(1/2)A)
SR exp(—(1/2)A;)

that represent the relative weight of evidence for the ith model
in the context of R candidate models. A; is the difference
between the value of AIC for the ith model and the smallest
AIC value for all candidate models. Usually the model with the
highest Akaike weight is selected as the ‘best’ model (Dick,
2004). An evidence ratio (ER) by structural model pairs
suggested by Burnham and Anderson (2002) was used:

exp(—1/2)A)
R = ap(C1/2)A)

where A; is as described previously and the subscripts k, j
correspond to the kth and jth model, respectively. The larger
the ER values, the larger the evidence against the jth model in
favor of the kth model. Explanatory factors influencing catch
rates incorporated in the model were identified applying a
stepwise GLM model building (Chambers and Hastie, 1997).
Models were built by adding new terms and seeing how much
they improved the fit, and by dropping terms that did not
degrade the fit significantly. The initial model was the ‘minimal
model’ consisting only of the overall mean. Adding or
removing a new term was decided based on an observed
reduction in the AIC. The final model was produced when no
further steps could decrease the criterion. Additionally,
a P-value based on the appropriate test statistic (chi squared
or F) was used to evaluate the significance of each additional
factor.

P =

)

3)

Results
Nominal CPUE

Between April 1998 and September 2001, the observers
reported a catch of 412 blue sharks in swordfish long-line
operations during 745 fishing days, 472 of which were sampled
at landing ports and 273 onboard (Figs 1 and 2). Blue shark
was the most abundant by-catch, reaching an overall 5.8% of
the total catch in number of fish. In total, no blue sharks were
caught in 402 out of 483 American type swordfish long-line sets
and 147 out of 262 traditional swordfish long-line sets (overall
there were non-zero catches in only 26.3% of the sets). Monthly
nominal CPUE values (Table 1) ranged from 0.00 to 1.25 blue
sharks /1000 hooks for the traditional swordfish long-line and
from 0.18 to 0.96 for the ‘American-type’ swordfish long-line.



Environmental and spatial-temporal effects on blue shark catches 49
'q-O Fishing sets
“i-‘;_rq 0
42°N % )?C' 1-2
4 3-5
- 6-10
40°N | m 11-15
. G‘“o% g, B 16-20
G,
5 n '6':4 W 21-25
38N . m 26-30
| B H 31-50
36°N e) . i W 51-65]
2 ;r L
. . : NN h 'LEVANTINE |
Fig. 1. Map of studied area and spatial 4
distribution of fishing effort, eastern Il . -
Mediterranean Sea, 19982001 (Spatial 32°N 1 "
resolution of fishing effort 1/3 of a '
degree) 14°E 16°E 18°E 20°E 22°E 24°E 26°E 28°E 30°E 32°E 34°E
CPUE (No/1000 hooks)
40,?’ 0.0
42N ity 01-02
@fp ?.q;.. 03-04
Tl + 05-06
40°N e %oc le ¢ 07-08
Ty
HH & e 09-10
- '"‘ e G:sq ® 11-20
38°N oo v ® 21-30
e ! ® 31-40
W ® 41-50
36°N p‘o’[’ el Ei ~—d- T
4 b e -
34°N O ELT] - -
_ S . -3 LEVANTINE
Fig. 2. Geographical distribution of e
blue shark (P. glauca) CPUE (no./ aoon | . .
1000 hooks), eastern Mediterranean .1
Sea, 1998-2001 (Spatial resolution of 14°E 16°E  18°E  20°E  22°E  24°E  26°E  28°E  30°E  32°E  34°F

fishing effort 1/ 3 of a degree)

Table 1
Effort (number of hooks), blue sharks captured, and nominal CPUE
P. glauca, caught in Mediterranean Sea, 1998-2001

values (no. fish/ 1000 hooks) by fishing gear and month for blue sharks,

Month
Fishing gear Mar Apr May Jun Jul Aug Sep Oct Total
SWO-LLt No. hooks 1150 850 30,450 35,080 124,930 123,360 61,540 22,150 399,510
No. sharks 0 0 8 44 156 66 18 18 310
CPUE 0.00 0.00 0.26 1.25 1.25 0.53 0.29 0.81 0.78
SWO-LL, No. hooks 8880 13,200 28,200 40,290 62,700 37,800 40,740 - 231,810
No. sharks 2 4 S 13 21 18 39 - 102
CPUE 0.23 0.30 0.18 0.32 0.34 0.48 0.96 - 0.44
Total No. hooks 10,030 14,050 58,650 75,370 187,630 161,160 102,280 22,150 631,320
No. sharks 2 4 13 57 177 84 57 18 412
CPUE 0.20 0.28 0.22 0.76 0.94 0.52 0.56 0.81 0.65

Selection of error-model and explanatory variables

Nine variables were included in the GLM model, the first six
being continuous and the last three categorical:

g (CPUE orN) = ¢+ ay Latitude + a; Longitude + a3 SST

+ a4 Bathymetry + as Distance from coast + ag Lunar index

+ a7 Month + ag Year + ay Fishing Gear type + ar INTER, +¢  (4)
where g was the link function, ‘CPUE’ the number (N) of shark
caught per 1000 hooks, a; the unknown coefficients, INTER,
any combination of interactions between Fishing Gear type and

variables expressing time (Month, Year) or area (Latitude,
Longitude), ¢ a constant and ¢ a random error term. Especially
for the initial Delta sub-model concerning the probability of
obtaining a zero catch assuming a binomial error distribution
with logit as the link function, we recoded CPUE to the binary
variable Presence, so that it was assigned a value of 0 when no
blue sharks were present in the catch, and a value of 1 if
otherwise (Bernoulli-type 0/ 1 measurements).

Analysis revealed that six out of nine variables and
Longitude : Latitude : Year interaction for the binomial
component and five out of nine, plus the Longitude : Latitude
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: Year : Fishing Gear type interaction for the lognormal com-
ponent, were significant. Comparison among evidence ratios
(ER) for the positive catch sets data gave evidence in favor of the
lognormal distribution relative to all the other candidate
models, suggesting it as the best approximating distribution
for the model (Table 2). Therefore, stepwise GLM model
building was applied to the data, assuming a lognormal error
distribution. Diagnostic plots verified that the lognormal
component approach adequately fit the data (Fig. 3) suggesting
that: (i) there is no systematic departure from the assumption of
the error distribution and that model misspecification is not
occurring (top), (i) variance changes, but not dramatically,
through the range of predicted values (middle) and, (iii) the
explanatory variables reduce satisfactorily the variance in the
data (bottom). The binomial component of the Delta approach
took the following form:

Presence (link = logit) ~ a) Year + a, Month

+ a3 Fishing Gear type + a4 poly (Latitude, df = 2)

+ as Longitude + ag poly (Distance from coast, df = 2)

+ a7 [Longitude : poly (Latitude, df = 2) : Year], (5)

and the lognormal component of the Delta approach (for
positive catch sets) :

log (CPUE) ~ a; Year + a, Month + asFishing Gear type

+ aq poly (Distance from coast, df = 3)

+ as poly (Latitude, df = 2) + ag [Longitude :

poly (Latitude, df = 2) : Year : Fishing Gear type], (6)

where poly are transformations of the explanatory variables
(polynomials in this case) and df stands for the degrees of freedom
of the polynomials (Note: polynomials of up to the third power
were investigated, i.e. df < 3). The detailed deviance results for the
two applied sub-models are shown in Tables 3 and 4.

Effects of explanatory variables

From our knowledge to date, blue sharks are not considered as
species-forming schools. Thus, the binomial component model
described the probability of encountering blue sharks. Once
encountered, the lognormal component model quantified the
probability of how many would there be as the measure of
local abundance.

Encountering blue sharks (presence—absence model)

The first sub-model, i.e. the binomial, included six significant
predictor variables: three categorical and three continuous

Table 2

AIC results, Akaike weights (w;) and evidence ratios (ER) for several
error distributions in a GLM for factors affecting blue shark,
P. glauca, positive catch rates, Mediterranean Sea, 1998-2001

Model AIC A; w; Akaike weights ~ ER!
Delta-gaussian 21527 16571  10x107* 10E + 04
Delta-gamma 51.29 1.73  0.29 2.4
Delta-lognormal 49.56 0.00 0.70 1.0
Delta-poisson 143.40 93.84  10x107* 10E + 04

Explanatory variables for each error distribution were the same for
consistency and comparison purposes.

'ERs calculated for each distribution relative to the lognormal
distribution. Poisson distribution fitted using number of blue sharks
caught as the response variable.
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Fig. 3. Diagnostic plots for goodness-of-fit of a Delta-lognormal
model for pelagic shark positive catch rates, eastern Mediterranean,
1998-2001. Standardized residuals versus predicted values (top),
square root of absolute values of standardized residuals versus
predicted values (middle) and observed versus predicted values
(bottom). Solid lines are /oess smoothers through the plotted data

(Table 3). In total, the derived model explained more than
29% of the variance in the probability of encountering blue
sharks.

Geographical location had the greatest effect on encounter-
ing P. glauca. Latitude and Longitude explained 30.3% and
7.6% of the total deviance, respectively, while their interaction
with Year contributed an additional 10.8% (Fig. 4). The effect
of Longitude indicated a strong gradient in the presence of blue
sharks, the probability increasing in a westerly direction
(Fig. 4, bottom left), while the Latitude effect was bimodal
with two separate peaks located to the extreme north and
south of the studied area (Fig. 4, top left).

Temporal factors (Year and Month) explained 19.2% and
16.4% of the total deviance, respectively. The fitted probability
of encountering blue sharks as a function of Month, revealed
an overall seasonal increasing trend from spring to autumn
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Table 3

Stepwise generalized linear model building for factors affecting blue shark, P. glauca, catches, Mediterranean Sea, 1998-2001

Residual  Residual Deviance ~ Cumulative % of total
Model structure terms added df deviance Df decrement deviance explained deviance explained P (Chi) AIC
NULL 744 858.63 860.63
+as.factor (Year) 741 810.45 3 48.18 5.61 19.18 0.0000  816.00
+as.factor (Month) 734 769.32 7 41.13 10.40 16.38 0.0000  780.00
+as.factor (Fishing gear type) 733 740.42 1 28.9 13.77 11.51 0.0000  754.70
+poly (Latitude, df = 2) 731 664.41 2 76.01 22.62 30.26 0.0000  688.17
+ Longitude 730 645.40 1 19.01 24.83 7.57 0.0000  671.53
+ poly (Distance from coast, df = 2) 728 634.54 2 10.86 26.10 4.32 0.0044  662.02
+ Longitude : poly (Latitude, df = 2) : 720 607.48 8 27.06 29.26 10.77 0.0007  637.83
as.factor (Year)
Sub-model 1: Delta-binomial probability of a non-zero catch.
Table 4
Stepwise generalized linear model building for factors affecting blue shark CPUE, Mediterranean Sea, 1998-2001
Residual  Residual Deviance ~ Cumulative % of total deviance
Model structure terms added df deviance Df decrement deviance explained explained P(F) AIC
NULL 195 98.48 99.49
+as.factor (Year) 192 87.16 30 11.32 11.50 23.14 0.0000  70.53
+as.factor (Month) 185 80.34 7 6.82 18.43 13.94 0.0026  66.56
+as.factor (Fishing Gear type) 184 65.11 1 1523 33.89 31.13 0.0000 62.46
+ poly (Distance from coast, df=3) 181 60.61 3 4.50 38.46 9.20 0.0021  59.36
+ poly (Latitude, df = 2) 179 56.63 2 3.98 42.50 8.14 0.0015  52.12
+ Longitude : poly (Latitude, df=2) : 165 49.56 14 7.07 49.68 14.45 0.0063  49.75

as.factor (Year) : as.factor
(Fishing Gear type)

Sub-model 2: Delta-lognormal positive sets.

Fig. 4. Generalized linear model
(GLM) derived effects of Latitude,
Year, Month, Fishing Gear type,
Longitude and Distance from the coast
on the Delta-binomial probability of
encountering blue sharks. Dashed lines
indicate  95% confidence bands.
Relative density of data points shown
by the ‘rug’ on the x-axis
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(Fig. 4, middle-left). The interesting peak at the end of spring—
start of summer is linked to local abundance, and is described
in detail in the next stage of the Delta approach (positive
lognormal catch rates). The annual effect demonstrated an
insignificant decline for the first three years followed by a
significant drop in 2001 (Fig. 4, top right).

The operational factor (Fishing Gear type) yielded an 11.5%
reduction of total deviance. The ‘American type’ swordfish
long-line turned out to be more effective in obtaining non-zero
catches than the traditional swordfish long-line (Fig. 4, mid-
dle-right). However, nominal CPUE values indicated that
traditional swordfish long-line catches were higher.

Distance from the coast, embracing both spatial and envi-
ronmental properties as an explanatory variable, was the final
principal term in the model. Probability seemed to be stable in
a buffer zone between 20 and 50 nautical miles (n.m.),
increasing substantially beyond this point to the open sea
and to a lesser extent when moving closer to the coast (Fig. 4,
bottom-right).

Spatio-temporal interaction (Latitude : Longitude : Year)
was significant and the probability surface fluctuated in the
three dimensional XYZ space (X = Longitude, Y = Latitude,
Z = probability) with an almost constant pattern for all years
except for the first year (1998).

Local abundance (positive catch sub-model)

The second sub-model included five significant predictor
variables: three categorical and two continuous, and the
interaction of Longitude : Latitude : Year : Fishing Gear type.
The final fitted model explained almost 50% of the deviance
(Table 4).

Fishing Gear type effect was the most important variable
affecting ‘local abundance’ of blue sharks, explaining more

than 31% of the total deviance in the model. The effect of this
parameter was more or less similar in both sub-models.
Whether we were interested in the probability of a non-zero
catch (binomial component) or how large a catch would be
(lognormal component), both models suggested that the
‘American type’ swordfish long-line was the one to which blue
sharks were more vulnerable (Fig. 5, top left).

The plot for Year revealed a modest declining trend in catch
rates between 1998 and 2001 (Fig. S, top right). The modeled
probability of an elevated blue shark catch by Month showed a
reverse pattern compared to the probability of encounter,
signifying that although blue shark were not likely to be caught
during spring (binomial component), the catch during a fishing
set taking place at the end of this season was more likely to be
large (lognormal component).

Distance from the coast plot (Fig. 5, mid-right), showed a
positive trend in favor of coastal areas: an elevated blue shark
catch being more likely near the coastline (<10 n.m.), almost
constant until 60 n.m. from land, then declining in the open
sea (>60 n.m.). Spatial predictor (Latitude) explained only
8.1% of total deviance, although Year : Latitude : Longitude
interaction accounted for an extra 14.5%. Catch rates related
to Latitude demonstrated a reverse pattern compared to the
probability of encountering a blue shark. Non-zero catch rates
were higher in the south but the probability of a non-zero
catch was higher in the north (Fig. 5, bottom). Finally, there
was a considerable interaction of spatial, temporal and
operational  factors (Latitude : Longitude : Year : Fishing
Gear type). Although the type of gear did not interact with
spatio-temporal factors when modelling the probability of
encountering a shark, it proved to be appreciably related to
them when modelling positive catch rates. Trends of positive
CPUE:s as a function of Longitude were more pronounced in
the traditional swordfish long-line.
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Discussion

The purpose in modeling Mediterranean blue shark catches
was to comprehend how fishery performance varied with a
selection of environmental, spatial, temporal and operational
factors and subsequently to generate standardized indices of
commercial catch rates, which could be useful for regional
planning and policy development for conservation and sus-
tainable management of the species. Nominal CPUE values
observed in this study were very low compared to analogous
values from surveys conducted in the western Mediterranean
and Atlantic (Nakano, 1994; Buencuerpo et al., 1998; Hazin
et al.,, 1998; Stone and Dixon, 2001; Nakano and Clarke,
2005). These low values can be attributed to the lower
productivity of the area, or lower abundance of sharks due
to regional depletion from historical fishing, or both.
A comparison of historical CPUE records in kg of fish /1000
hooks in the North Ionian Sea with recent records (De Metrio
et al., 1984; Megalofonou et al., 2005b) reveals that catch rates
over the past 20 years have decreased by an average of 38.5%.
Although the time period of the data set (1998-2001) was brief,
a declining trend in annual catch rates is apparent. These data
together with other available evidence (Gilman et al., 2007;
Saldo et al., 2007) point out that the Mediterranean P. glauca
population is in general decline and is possibly facing a worse
scenario than blue shark populations elsewhere in the world. It
may be premature to draw strong inferences regarding
environmental effects on shark distribution and abundance;
even so, our results indicated that spatial, operational and
temporal factors played the predominant role in the model,
while environmental features were of minor importance
probably because the most appropriate environmental vari-
ables were not modeled.

Spatial variables affecting catches

GLM analysis, modeling the probability of encountering a
blue shark, revealed that Latitude had the most profound
effect. Elevated probabilities of catching a shark increased
northwards, peaking north of the 40th parallel. Strasburg
(1958), Nakano (1994), Bigelow et al. (1999) and Walsh and
Kleiber (2001) described latitudinal patterns in the northern
Pacific (sharks being more abundant to the north). According
to Bigelow et al. (1999) this finding was ascribed to: (i) presence
of the Sub-Arctic Frontal Zone in the Northern Pacific plus
the increased abundance of prey species during spring and
summer and, (ii) inefficient exploitation of blue sharks by near-
surface gear in the subtropics, since shark tend to shift to
deeper, cooler water masses. As the Mediterranean is a semi-
enclosed sea and not an open ocean like the Atlantic and
Pacific, the aforementioned arguments do not apply in our
case. The increased probability of catching a shark in higher
latitudes could be attributed to the productivity of the
northern areas due to incoming nutrients from European
rivers. On the other hand, elevated catch rates in latitudes
south of the 34th parallel indicate a persistent presence of blue
sharks in this area. Thus, although generally characterized as
oligotrophic due to the deep vertical mixing of water masses,
local and temporal anomalously very high productive areas
have been detected (Siokou-Frangou et al., 2005).

The strong longitudinal component of where blue shark are
present, with the probability increasing from east to west, has
been confirmed not only for the studied area but also
throughout the Mediterranean (Megalofonou et al., 2005b).

Additionally, data from the vicinity of the Strait of Gibraltar
show that the Atlantic fishing sets were more proliferate than
those in the Mediterranean (Buencuerpo et al., 1998; Mega-
lofonou et al., 2005b). Increased productivity and abundance
of prey may be the key factor in interpreting the effect of
Longitude. The higher trophic potential of the western
Mediterranean compared to the eastern area supports this
assumption (Caddy, 1998).

Operational variables affecting catches

The result for Fishing Gear type was expected, as the use of
‘American type’ swordfish long-lines had a significant effect on
both the probability of catching a blue shark and of making a
large catch during a fishing set. The use of fish attractant
chemical light-sticks and thicker, more resilient, lines is a
reasonable explanation for increased catches with the ‘Amer-
ican type’ swordfish long-line when compared to the tradi-
tional long-line. However, depths at which fishing take place
can also affect the catch effort. SWO-LL, targets deeper
waters, often below 50 m, whereas SWO-LLt depth ranges
rarely exceed 20 m (Megalofonou et al., 2005a). It can be
assumed that the Fishing Gear type variable reflects fish
vulnerability rather than their actual abundance.

Temporal variables affecting catches

Temporal distribution of blue shark catches, indicating higher
probability of their capture during summer and autumn, could
be attributed to the recruitment of juveniles entering the
fishery. Parturition for blue sharks is known to take place from
April to July (Pratt, 1979), hence making late autumn and
winter a plausible period for the young to enter the fishery.
Nakano (1994), however, commented that seasonal abundance
of blue sharks largely depends on their migration pattern.
Buencuerpo et al. (1998) reported September and April as
months with increased shark abundance. Hazin (1994) placed
this period in the 3rd and 4th quarters of the year, Bigelow
et al. (1999) and Walsh and Kleiber (2001) at the end of the
year, and Strasburg (1958) during spring and summer. The
Mediterranean is a semi-enclosed temperate sea quite different
from other oceans where some seasonal information is known.
Compounded by the fact that very little is known about blue
shark distribution and migration makes an explanation
difficult for the increased probability of achieving larger catch
during spring. A tagging program to study the blue shark
behavior and migration pattern in the Mediterranean as well
as a more detailed examination of catches incorporating
biological data such as size, sex and maturity, could elucidate
the temporal effect on abundance.

Environmental variables affecting catches

The cause for the positive relation between blue shark
occurrence and Distance from the coast could be readily
justified, as blue shark is an oceanic species. Strasburg (1958)
and Hazin (1994) have also shown that blue shark occurrence
is positively correlated to Distance from the coast. The
observed reverse pattern when studying catch rates instead of
occurrence could be attributed to the seasonal migratory
behavior of the species due to parturition. Casey (1985)
reported a rapid and concentrated movement inshore in late
spring which, combined with Pratt’s (1979) suggestions on the
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time frame for giving birth to pups, could be the most likely
solution to the puzzling elevated abundance of P. glauca in the
vicinity of land. Additionally, food availability is another
plausible explanation, as the prey of blue shark usually
congregate near land, seamounts or banks (Hazin, 1994;
Bigelow et al., 1999).

Of note is that the sea surface temperature (SST) was
omitted from both models during the fitting procedure as
being insignificant. Santos and Miguel (2000) in a review of the
effects of environmental conditions cited that 63% of fish
behaviors were related to sea surface temperature. However,
acoustic telemetry studies on blue sharks have shown that
sharks regularly swim below the thermocline where they
experience water temperatures much lower than at the sea
surface (Carey and Scharold, 1990; Klimley et al., 2002). Thus,
SST as an influential factor in blue shark catches is insignif-
icant, since surface temperature may bear very little relation-
ship to their preferred thermal habitat.

Abundance trends

Fitted values for the probability P of a non-zero catch and the
expected CPUE, conditional on it being positive, the predicted
unconditional CPUE is given as P*CPUE (Stefansson, 1996).
Our results suggest a moderate decline of sharks in catches for
the the study period (1998-2001). Especially for the last year
(2001) the estimated probability of catching a shark in a fishing
set was significantly low (Fig. 6). This finding could be linked
to such reasons as: (i) inter-annual environmentally driven
fluctuations of shark distribution, (ii) mal-apportioned fishing
or sampling effort, or (iii) a signal that the population is under
intensive fishing pressure. The significant interaction effect of
Latitude : Longitude : Year in both sub-models mostly sup-
ports the second supposition. Italian data (located to the
north-west) made up the bulk of observations during the first
two years, whereas this situation was reversed in the final
2 years in favor of the Greek data (south-east). Therefore, the
strong longitudinal gradient (catches to the west > catches to
the east) interacting with the Year effect resulted in an
increased abundance for the first 2 years.

Comparing the results of an analogous study on eastern
Mediterrancan swordfish (Damalas et al., 2007) with the
current study, P. glauca differed considerably from their
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Fig. 6. Generalized Linear Model (GLM) standardized CPUE index
of blue shark abundance (number sharks/ 1000 hooks) by Year
(Lightly shaded box area limits correspond to 25th and 75th
percentiles. Dark shaded notched box area indicates 95% confidence
bounds around the median, shown as a small solid black box.
Whiskers extend to min and max values observed)

pelagic ‘co-tenants’ in many distributional aspects. Further-
more, the results for Mediterranean swordfish, which form a
distinct population, were not in agreement with the results
from Atlantic and Pacific ocean surveys. These findings
together with the fact that the blue shark population status
is still poorly understood corroborate the need for interna-
tional programs monitoring catch levels as well as the necessity
for biological studies of the species in the Mediterranean.

Acknowledgements

This study was financed in part by the Commission of the
European Communities (Project no 97 /50 DG XIV /Cl1) and
does not necessarily reflect the views of the European
Commission.

References

Bigelow, K. A.; Boggs, C. H.; He, X., 1999: Environmental effects on
swordfish and blue shark catch rates in the US North Pacific
longline fishery. Fish. Oceanogr. 8, 3, 178-198, doi/ pdf/ 10.1046/
j-1365-2419.1999.00105.x.

Buencuerpo, V.; Rios, S.; Moron, J., 1998: Pelagic sharks associated
with the swordfish, Xiphias gladius, fishery in the eastern North
Atlantic Ocean and the Strait of Gibraltar. Fish. Bull. 96, 667—
685.

Burnham, K. P.; Anderson, D. R., 2002: Model selection and
multimodel inference: a practical information-theoretic approach,
2nd edn. Springer, New York, 485 pp.

Caddy, J. F., 1998: Issues in Mediterranean fisheries management:
geographical units and effort control. Studies and reviews.
General Fisheries Council for the Mediterranean, Rome [Stud.
Rev GFCM] no. 70, 56 pp.

Carey, F. G.; Scharold, J., 1990: Movements of blue sharks (Prionace
glauca) in depth and course. Mar. Biol. 106, 329-342.

Casey, J. G., 1985: Transatlantic migrations of the blue shark; a case
history of cooperative shark tagging. In: World angling resources
and challenges. R. H. Stroud (Ed.). Proceedings of the First
World Angling Conference, Cap d’Adge, France, 1984. Interna-
tional Gamefish Association, Ft. Lauderdale, Florida, pp. 253~
268.

Castro, J. I.; Woodley, C. M.; Brudek, R. L., 1999: A preliminary
evaluation of the status of shark species. FAO Fisheries Techn.
Pap. 380, FAO. Rome.

Chambers, J. M.; Hastie, T. J., 1997: Statistical models in S. Chapman
and Hall, London. 608 pp.

Compagno, L. J. V., 1984: FAO species catalogue. Vol. 4: Sharks of
the World: an annotated and illustrated catalogue of shark species
known to date. Part 2: Carchariniformes. FAO Fish. Synop. 125,
251-655.

Cortes, E., 2002: Catches and catch rates of pelagic sharks from the
Northwestern Atlantic, Gulf of Mexico, and Caribbean. ICCAT.
Col. Vol. Scient. Pap. 54, 1164-1181.

Damalas, D.; Megalofonou, P.; Apostolopoulou, M., 2007: Environ-
mental, spatial, temporal and operational effects on swordfish
(Xiphias gladius) catch rates of eastern Mediterranean Sea longline
fisheries. Fish. Res. 84, 233-246.

De Metrio, G.; Petrosino, G.; Montanaro, C.; Matarrese, A.; Lenti,
M.; Cecere, E., 1984: Survey on summer-autumn population of
Prionace glauca L. (Pisces, Chondricthyes) during the four year
period 1978-1981 and its incidence on swordfish (Xiphias gladius
L.) and albacore (Thunnus alalunga (Bonn.)) fishing. Oebalia 10,
105-116.

De Metrio, G.; Megalofonou, P.; Tselas, S.; Tsimenides, N., 1988:
Fishery and biology of the swordfish, Xiphias gladius, L. 1758 in
Greek waters. FAO Fish. Rep. 412, 135-145.

Dick, E. J., 2004: Beyond ‘lognormal versus gamma’: discrimination
among error distributions for generalized linear models. Fish.
Res. 70, 351-366.

Gilman, E.; Clarke, S.; Brothers, N.; Alfaro-Shigueto, J.; Mandelman,
J.; Mangel, J.; Petersen, S.; Piovano, S.; Thomson, N.; Dalzell, P.;
Donoso, M.; Goren, M.; Werner, T., 2007: Shark depredation
and unwanted bycatch in pelagic longline fisheries: industry
practices and attitudes, and shark avoidance strategies. Western



Environmental and spatial-temporal effects on blue shark catches

55

Pacific Regional Fishery Management Council, Honolulu, USA.
Available at:  http://www.wpcouncil.org/pelagic/Documents/
Shark-Longline_Interactions_Report.pdf.

Hazin, F. H. V., 1994: Distribution and relative abundance of the blue
shark, Prionace glauca, in the southwestern equatorial Atlantic
Ocean. Fish. Bull. 92, 474-480.

Hazin, F. H. V.; Zagaglia, J. R.; Broadhurst, M. K.; Travassos, P. E.
P.; Bezerra, T. R. Q., 1998: Review of a small-scale pelagic
longline fishery off northeastern Brazil. Mar. Fish. Rev. 60, 1-8.

Klimley, A. P.; Beavers, S. C.; Curtis, T. H.; Jorgensen, S. J., 2002:
Movements and swimming behavior of three species of sharks in
La Jolla Canyon, California. Environ. Biol. Fish 63, 117-135.

Maunder, M. N.; Punt., A. E., 2004: Standardizing catch and effort
data: a review of recent approaches. Fish. Res. 70, 141-159.

McCullagh, P.; Nelder, J. A., 1989: Generalized linear models, 2nd
edn. Chapman & Hall/ CRC, London, 511 pp.

Megalofonou, P.; Damalas, D.; Yannopoulos, C., 2005a: Composition
and abundance of pelagic shark by-catch in the eastern Mediter-
ranean Sea. Cybium 29, 135-140.

Megalofonou, P.; Yannopoulos, C.; Damalas, D.; De Metrio, G.;
Deflorio, M.; de la Serna, J. M.; Macias, D., 2005b: Pelagic
shark incidental catch and estimated discards from the sword-
fish and tuna fisheries in the Mediterranean Sea. Fish. Bull.
103, 620-634.

Nakano, H., 1994: Age, reproduction and migration of blue shark in
the North Pacific Ocean. Bull. Nat. Res. Inst. Far Seas Fish. 31,
141-219.

Nakano, H.; Clarke, S., 2005: Standardized CPUE for blue sharks
caught by the Japanese longline fishery in the Aatlantic Ocean,
1971-2003. ICCAT. Col. Vol. Sci. Pap. 58, 1127-1134.

Ortiz, M.; Arocha, F., 2004: Alternative error distribution models for
standardization of catch rates of non-target species from a pelagic
longline fishery: billfish species in the Venezuelan tuna longline
fishery. Fish. Res. 70, 275-297.

Pratt, H. L., 1979: Reproduction in the blue shark, Prionace glauca.
Fish. Bull. 77, 445-470.

Punt, A. E.; Walker, T. I.; Taylor, B. L.; Pribac, F., 2000: Standard-
ization of catch and effort data in a spatially-structured shark
fishery. Fish. Res. 45, 129-145.

Soldo, A.; Megalofonou, P.; Bianchi, I.; Macias, D., 2007: Blue shark
Prionace glauca (Linnaeus, 1758). In: Overview of the conserva-
tion status of cartilaginus fishes (Chondrichthyans) in the Med-
iterranean Sea. R. D. Cavanagh, C. Gibson (Eds). IUCN, Gland,
Switzerland and Malaga, Spain, 42 p.

Santos, A.; Miguel, P., 2000: Fisheries oceanography using satellite
and airborne remote sensing methods: a review. Fish. Res. 49,
1-20.

Siokou-Frangou, I.; Christou, E. D.; Fragopoulu, N., 2005: Zoo-
plankton communities in the Hellenic seas. In: SoHelME, 2005.
State of the hellenic marine environment. E. Papathanassiou,
A. Zenetos (Eds). HCMR Publ, Athens, pp. 194-204.

Stefansson, G., 1996: Analysis of groundfish survey abundance data:
Combining the GLM and delta approaches. ICES J. Mar. Sci. 53,
577-588.

Stevens, J. D., 1999: Sharks, 2nd edn. Checkmark Books, New York,
240 pp.

Stevens, J., 2000: Prionace glauca. In: TUCN 2006. 2006 TUCN red list
of threatened species. http://www.iucnredlist.org.

Stone, H.; Dixon, L., 2001: A comparison of catches of swordfish,
Xiphias gladius, and other pelagic species from Canadian long line
gear configured with alternating monofilament and multifilament
nylon gangions. Fish. Bull. 99, 210-216.

Strasburg, D. W., 1958: Distribution, abundance, and habits of pelagic
sharks in the central Pacific Ocean. Fish. Bull. 58, 335-361.
Venables, W. N.; Dichmont, C. M., 2004: GLMs, GAMs and
GLMMs: an overview of theory for applications in fisheries

research. Fish. Res. 70, 319-337.

Walsh, W. A.; Kleiber, P., 2001: Generalized additive model and
regression tree analyses of blue shark (Prionace glauca) catch rates
by the Hawaii-based commercial long line fishery. Fish. Res. 53,
115-131.

Author’s address: Persefoni Megalofonou, Department of Biology,
Section of Zoology-Marine Biology, University of
Athens, Panepistimiopolis, GR-15784 Athens,
Greece.
E-mail: Pmegalo@biol.uoa.gr



